Viktad rörlig medelkalkylator Med en lista över sekventiella data kan du konstruera det n-punktsviktade glidande medlet (eller viktat rullande medelvärde) genom att hitta det viktade genomsnittet av varje uppsättning n-punkter i följd. Antag exempelvis att du har den beställda datasatsen 10, 11, 15, 16, 14, 12, 10, 11 och viktningsvektorn är 1, 2, 5, där 1 tillämpas på äldsta termen, tillämpas 2 på medellång sikt och 5 tillämpas på den senaste termen. Därefter är det viktade 3-punkts glidande medlet 13.375, 15.125, 14.625, 13, 11, 10.875 Viktiga glidmedelvärden används för att släta sekventiella data samtidigt som det ger mer betydelse för vissa termer. Vissa viktade medelvärden lägger mer värde på centrala villkor, medan andra gynnar senare villkor. Aktieanalytiker använder ofta ett linjärt viktat n-punkts glidande medelvärde där viktningsvektorn är 1, 2. n-1. n. Du kan använda räknaren nedan för att beräkna det rullande vägda genomsnittet av en dataset med en given vektorgrafik. (För räknaren skriver du in vikter som en kommaseparerad lista över siffror utan parentes och parentes.) Antal termer i en viktad n-punkts rörlig genomsnittsnivå Om antalet termer i ursprungsuppsättningen är d och antalet termer som används i varje genomsnitt är n (det vill säga längden på viktvektorn är n), då kommer antalet villkor i den glidande genomsnittsföljden att vara till exempel om du har en sekvens av 120 aktiekurser och tar ett 21-dagarsviktat rullande medelvärde av priserna kommer den viktade rullande genomsnittssekvensen att ha 120-21 1 100 datapunkter. Vägande rörliga medelvärden: Grunderna Under åren har tekniker funnit två problem med det enkla glidande medlet. Det första problemet ligger i tidsramen för glidande medelvärdet (MA). De flesta tekniska analytiker tror att prisåtgärder. det öppnande eller stängande aktiekurset räcker inte för att bero på att förutsäga köp - eller försäljningssignaler för MAs crossover-åtgärden korrekt. För att lösa detta problem, tilldelar analytiker nu mer vikt till de senaste prisuppgifterna med hjälp av det exponentiellt jämnaste glidande genomsnittet (EMA). (Läs mer om att utforska exponentiellt vägda rörliga medelvärdet.) Ett exempel Till exempel, med en 10-dagars MA, skulle en analytiker ta slutkursen för den 10: e dagen och multiplicera detta nummer med 10, den nionde dagen med nio, den åttonde dag med åtta och så vidare till den första av MA. Så snart summan har bestämts, fördelar analytikern sedan numret genom tillsats av multiplikatorerna. Om du lägger till multiplikatorerna i 10-dagars MA-exemplet är numret 55. Denna indikator kallas det linjärt viktade glidande medlet. (För relaterad läsning, kolla in Enkla rörliga genomsnittsvärden. Utveckla tendenser.) Många tekniker är fasta troende i det exponentiellt jämnaste glidande genomsnittet (EMA). Denna indikator har förklarats på så många sätt att det både förvirrar studenter och investerare. Kanske kommer den bästa förklaringen från John J. Murphys tekniska analys av finansmarknaderna (publicerad av New York Institute of Finance, 1999). Det exponentiellt jämnaste glidande genomsnittet adresserar båda problemen i samband med det enkla glidande medlet. För det första tilldelar det exponentiellt jämnde medlet en större vikt till de senaste data. Därför är det ett viktat glidande medelvärde. Men medan det tilldelar mindre betydelse för tidigare prisuppgifter, ingår det i beräkningen av alla data i instrumentets livstid. Dessutom kan användaren justera viktningen för att ge större eller mindre vikt till det senaste dagspriset, vilket läggs till i procent av värdet för tidigare dagar. Summan av båda procentvärdena lägger till 100. Till exempel kan det sista dagspriset tilldelas en vikt av 10 (.10), vilket läggs till föregående dagsvikt på 90 (.90). Detta ger den sista dagen 10 av totalvikten. Detta skulle motsvara ett 20-dagarsmedelvärde genom att ge priset för sista dag ett mindre värde av 5 (.05). Figur 1: Exponentiellt slät Flyttande medelvärde Ovanstående diagram visar Nasdaq Composite Index från den första veckan i augusti 2000 till 1 juni 2001. Som du tydligt kan se, EMA, som i detta fall använder slutkursdata över en nio dagars period, har bestämda säljsignaler den 8 september (markerad med en svart nedåtpil). Det var den dag då indexet bröt sig under 4 000-nivån. Den andra svarta pilen visar ett annat ben som teknikerna faktiskt förväntade sig. Nasdaq kunde inte generera tillräckligt mycket volym och intresse från detaljhandeln för att bryta 3 000 mark. Därefter dyker du ner igen till botten ut vid 1619.58 den 4 april. Upptrenden av 12 april markeras med en pil. Här stängde indexet 1961.46, och tekniker började se att institutionella fondförvaltare började hämta några fynd som Cisco, Microsoft och några av de energirelaterade frågorna. (Läs våra relaterade artiklar: Flytta genomsnittliga kuvert: Raffinera ett populärt handelsverktyg och flytta genomsnittlig studs.) Artikel 50 är en förhandlings - och avvecklingsklausul i EU-fördraget som beskriver de åtgärder som ska vidtas för vilket land som helst. Ett första bud på ett konkursföretagets tillgångar från en intresserad köpare vald av konkursbolaget. Från en pool av budgivare. Beta är ett mått på volatiliteten eller systematisk risk för en säkerhet eller en portfölj i jämförelse med marknaden som helhet. En typ av skatt som tas ut på kapitalvinster som uppkommit av individer och företag. Realisationsvinster är vinsten som en investerare. En order att köpa en säkerhet till eller under ett angivet pris. En köpgränsorder tillåter näringsidkare och investerare att specificera. En IRS-regel (Internal Revenue Service Rule) som tillåter utbetalningar från ett IRA-konto i samband med straff. Regeln kräver att Flyttmedelvärdet i det här exemplet lär dig hur man beräknar det glidande genomsnittet för en tidsserie i Excel. Ett glidande medel används för att jämna ut oegentligheter (toppar och dalar) för att enkelt kunna känna igen trender. 1. Låt oss först titta på våra tidsserier. 2. Klicka på Dataanalys på fliken Data. Obs! Det går inte att hitta knappen Data Analysis Klicka här för att ladda verktyget Analysis ToolPak. 3. Välj Flytta medelvärde och klicka på OK. 4. Klicka i rutan Inmatningsområde och välj intervallet B2: M2. 5. Klicka i rutan Intervall och skriv 6. 6. Klicka i rutan Utmatningsområde och välj cell B3. 8. Skriv en graf över dessa värden. Förklaring: Eftersom vi ställer intervallet till 6 är det rörliga genomsnittet genomsnittet för de föregående 5 datapunkterna och den aktuella datapunkten. Som ett resultat utjämnas toppar och dalar. Diagrammet visar en ökande trend. Excel kan inte beräkna det rörliga genomsnittet för de första 5 datapunkterna eftersom det inte finns tillräckligt med tidigare datapunkter. 9. Upprepa steg 2 till 8 för intervall 2 och intervall 4. Slutsats: Ju större intervall desto mer topparna och dalarna utjämnas. Ju mindre intervall desto närmare de rörliga medelvärdena är de faktiska datapunkterna. Vad är skillnaden mellan glidande medelvärde och viktat glidande medelvärde. Ett 5-glidande medelvärde baserat på priserna ovan beräknas med följande formel: Baserat på ekvationen ovan var det genomsnittliga priset över ovannämnda period 90,66. Att använda glidande medelvärden är en effektiv metod för att eliminera starka prisfluktuationer. Huvudbegränsningen är att datapunkter från äldre data inte vägs något annorlunda än datapunkter nära början av datasatsen. Det är här viktiga glidande medelvärden kommer i spel. Viktiga medelvärden tilldelar tyngre viktning till mer aktuella datapunkter eftersom de är mer relevanta än datapunkter i det avlägsna förflutna. Summan av viktningen ska lägga till upp till 1 (eller 100). När det gäller det enkla glidande medlet fördelas viktningarna jämnt, varför de inte visas i tabellen ovan. Slutpriset för AAPL
No comments:
Post a Comment